5,639 research outputs found

    The challenges and potential benefits of perennial organic cropping systems-example of organic top fruit

    Get PDF
    Of all the organic food sectors in the UK, top fruit production is one of the least developed. Despite strong consumer demand and high prices for organic fruit, UK production remains small and 90% of supplies are imported. Current methods of production are unsatisfactory with low yields and erratic quality, with resulting variable economic performance. Pest and disease problems are one of the main reasons for this poor performance, with current varieties being unable to provide sufficient resistance. New varieties and an improved pest and disease management programme, identified as part of a HORTLINK project, offer new hope to the sector. There are now opportunities for the sector to grow and provide greater UK supplies of top fruit, in addition to widening the proven benefits to biodiversity of organic orchards

    Storage of organically produced crops (OF0127T)

    Get PDF
    This is the final report of Defra Project OF0127T. The main objective of this review was to establish best storage practice for field vegetables, potatoes, cereals and top fruit. A literature review was carried out and information was also gathered from the industry. Information relevant to growers and farmers has been drawn together to provide a comprehensive base from which technical advisory leaflets can be produced. The costs of different storage methods are provided, and case studies used wherever possible. In general, organic crops can be stored using the same methods as conventional crops but there is an increased risk that sometimes there will be higher storage losses because pesticides and sprout suppressants are not used. On the whole, specific problems with pests and diseases can be avoided using good organic husbandry techniques and by storing undamaged, healthy crops. In the case of cereals storage at correct moisture content and temperatures can avoid pests and moulds. However, there are some areas where more technical development or research would be useful and these have been identified. Relatively few organic growers store vegetables, but in order to maintain a supply of good quality UK produce throughout the year, more long term cold storage space is required (either on farm or in co-operative type stores). Based on the limited data available, economic analysis revealed that long term storage of organic vegetables has generally not been profitable. However, as the market expands in the future, it is likely that storage will become as essential for vegetables as it is for organic cereals and fruit

    Phase-space structure of two-dimensional excitable localized structures

    Get PDF
    In this work we characterize in detail the bifurcation leading to an excitable regime mediated by localized structures in a dissipative nonlinear Kerr cavity with a homogeneous pump. Here we show how the route can be understood through a planar dynamical system in which a limit cycle becomes the homoclinic orbit of a saddle point (saddle-loop bifurcation). The whole picture is unveiled, and the mechanism by which this reduction occurs from the full infinite-dimensional dynamical system is studied. Finally, it is shown that the bifurcation leads to an excitability regime, under the application of suitable perturbations. Excitability is an emergent property for this system, as it emerges from the spatial dependence since the system does not exhibit any excitable behavior locally.Comment: 10 pages, 9 figure

    Subcritical patterns and dissipative solitons due to intracavity photonic crystals

    Get PDF
    Manipulation of the bifurcation structure of nonlinear optical systems via intracavity photonic crystals is demonstrated. In particular, subcritical regions between spatially periodic states are stabilized by modulations of the material's refractive index. An family of dissipative solitons within this bistability range due to the intracavity photonic crystal is identified and characterized in both one and two transverse dimensions. Nontrivial snaking of the modulated-cavity soliton solutions is also presented

    A two-axis pointing system for an orbiting astronomical instrument

    Get PDF
    The system described was built for incorporation into a solar flare X-ray instrument due to be orbited as one of a number of instruments on the NASA Solar Maximum Mission (SMM) satellite in late 1979. It enables the instrument to be rotated about 2 mutually perpendicular axes in 5 arc-second steps within a range of 7 arc-minutes, thus giving the instrument the capability to map areas of the sun

    Fundamentals and applications of spatial dissipative solitons in photonic devices : [Chapter 6]

    Get PDF
    We review the properties of optical spatial dissipative solitons (SDS). These are stable, self‐localized optical excitations sitting on a uniform, or quasi‐uniform, background in a dissipative environment like a nonlinear optical cavity. Indeed, in optics they are often termed “cavity solitons.” We discuss their dynamics and interactions in both ideal and imperfect systems, making comparison with experiments. SDS in lasers offer important advantages for applications. We review candidate schemes and the tremendous recent progress in semiconductor‐based cavity soliton lasers. We examine SDS in periodic structures, and we show how SDS can be quantitatively related to the locking of fronts. We conclude with an assessment of potential applications of SDS in photonics, arguing that best use of their particular features is made by exploiting their mobility, for example in all‐optical delay lines

    A General Account of Micro-Chemical Methods in Criminal Investigations

    Get PDF

    Self-pulsing dynamics in a cavity soliton laser

    Get PDF
    The dynamics of a broad-area vertical-cavity surface-emitting laser (VCSEL) with frequency-selective feedback supporting bistable spatial solitons is analyzed experimentally and theoretically. The transient dynamics of a switch-on of a soliton induced by an external optical pulse shows strong self-pulsing at the external-cavity round-trip time with at least ten modes excited. The numerical analysis indicates an even broader bandwidth and a transient sweep of the center frequency. It is argued that mode-locking of spatial solitons is an interesting and viable way to achieve three-dimensional, spatio-temporal self-localization and that the transients observed are preliminary indications of a transient cavity light bullet in the dynamics, though on a non negligible background
    corecore